Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Curr Probl Diagn Radiol ; 53(3): 359-368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38302304

RESUMEN

This retrospective study aimed to reveal discrepancies between planned (Tplan) and actual (Tact) slot lengths of abdomen MRI exams, and to improve Tplan by predicting slot lengths via a machine learning algorithm. Tplan and Tact were retrieved from RIS and modality logfiles, respectively, covering 3038 MRI exams of 17 protocols performed at an abdomen department. Comparisons showed that 30% of exams exceeded planned slot lengths. On the other hand, exams completed within planning failed to manifest good adherence to schedule, as many of them were assigned with an unnecessarily long slot. While adjusting the planned exam duration by a fixed amount of time for each protocol could move Tplan closer to the mean or median Tact, the large spread of Tact would still be unaffected. This is why this study goes one step further, introducing a method to predict the required slot length not only per protocol, but for each individual exam. A Random Forest Regression model was trained on historic data to predict individual slot lengths (Tpred) based on patient and exam context. The correlation between Tpred and Tact was found to be better than that of Tplan and Tact, with Pearson correlation factors of 0.66 and 0.50, respectively. The overall adherence to schedule was also improved by the prediction, as seen by a reduction of both the root mean squared error (-28%) and the standard deviation (-16%) of the differences between planned/predicted slot times and Tact. To provide further insights into the discrepancies between planning and execution of MRI exams, nineteen exams from the Liver protocol with verified clinical information were selected. This case study showed that patient conditions, diagnostic purposes and the selection of sequences during exams could explain some variations of exam durations, but the potential for improving the exam time prediction by including this additional context is limited.


Asunto(s)
Hígado , Imagen por Resonancia Magnética , Humanos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos
2.
NMR Biomed ; 37(5): e5097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38269568

RESUMEN

PURPOSE: Liver T1 mapping techniques typically require long breath holds or long scan time in free-breathing, need correction for B 1 + inhomogeneities and process composite (water and fat) signals. The purpose of this work is to accelerate the multi-slice acquisition of liver water selective T1 (wT1) mapping in a single breath hold, improving the k-space sampling efficiency. METHODS: The proposed continuous inversion-recovery (IR) Look-Locker methodology combines a single-shot gradient echo spiral readout, Dixon processing and a dictionary-based analysis for liver wT1 mapping at 3 T. The sequence parameters were adapted to obtain short scan times. The influence of fat, B 1 + inhomogeneities and TE on the estimation of T1 was first assessed using simulations. The proposed method was then validated in a phantom and in 10 volunteers, comparing it with MRS and the modified Look-Locker inversion-recovery (MOLLI) method. Finally, the clinical feasibility was investigated by comparing wT1 maps with clinical scans in nine patients. RESULTS: The phantom results are in good agreement with MRS. The proposed method encodes the IR-curve for the liver wT1 estimation, is minimally sensitive to B 1 + inhomogeneities and acquires one slice in 1.2 s. The volunteer results confirmed the multi-slice capability of the proposed method, acquiring nine slices in a breath hold of 11 s. The present work shows robustness to B 1 + inhomogeneities ( wT 1 , No B 1 + = 1.07 wT 1 , B 1 + - 45.63 , R 2 = 0.99 ) , good repeatability ( wT 1 , 2 ° = 1 . 0 wT 1 , 1 ° - 2.14 , R 2 = 0.96 ) and is in better agreement with MRS ( wT 1 = 0.92 wT 1 MRS + 103.28 , R 2 = 0.38 ) than is MOLLI ( wT 1 MOLLI = 0.76 wT 1 MRS + 254.43 , R 2 = 0.44 ) . The wT1 maps in patients captured diverse lesions, thus showing their clinical feasibility. CONCLUSION: A single-shot spiral acquisition can be combined with a continuous IR Look-Locker method to perform rapid repeatable multi-slice liver water T1 mapping at a rate of 1.2 s per slice without a B 1 + map. The proposed method is suitable for nine-slice liver clinical applications acquired in a single breath hold of 11 s.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Hígado/diagnóstico por imagen , Abdomen , Respiración , Fantasmas de Imagen , Reproducibilidad de los Resultados , Corazón
3.
Magn Reson Med ; 90(5): 2116-2129, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37332200

RESUMEN

PURPOSE: This work was aimed at proposing a supervised learning-based method that directly synthesizes contrast-weighted images from the Magnetic Resonance Fingerprinting (MRF) data without performing quantitative mapping and spin-dynamics simulations. METHODS: To implement our direct contrast synthesis (DCS) method, we deploy a conditional generative adversarial network (GAN) framework with a multi-branch U-Net as the generator and a multilayer CNN (PatchGAN) as the discriminator. We refer to our proposed approach as N-DCSNet. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. The performance of our proposed method is demonstrated on in vivo MRF scans from healthy volunteers. Quantitative metrics, including normalized root mean square error (nRMSE), peak signal-to-noise ratio (PSNR), structural similarity (SSIM), learned perceptual image patch similarity (LPIPS), and Fréchet inception distance (FID), were used to evaluate the performance of the proposed method and compare it with others. RESULTS: In-vivo experiments demonstrated excellent image quality with respect to that of simulation-based contrast synthesis and previous DCS methods, both visually and according to quantitative metrics. We also demonstrate cases in which our trained model is able to mitigate the in-flow and spiral off-resonance artifacts typically seen in MRF reconstructions, and thus more faithfully represent conventional spin echo-based contrast-weighted images. CONCLUSION: We present N-DCSNet to directly synthesize high-fidelity multicontrast MR images from a single MRF acquisition. This method can significantly decrease examination time. By directly training a network to generate contrast-weighted images, our method does not require any model-based simulation and therefore can avoid reconstruction errors due to dictionary matching and contrast simulation (code available at:https://github.com/mikgroup/DCSNet).


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos
4.
Neuroimage ; 264: 119750, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379421

RESUMEN

The myelin concentration and the degree of myelination of nerve fibers can provide valuable information on the integrity of human brain tissue. Magnetic resonance imaging (MRI) of myelin-sensitive parameters can help to non-invasively evaluate demyelinating diseases such as multiple sclerosis (MS). Several different myelin-sensitive MRI methods have been proposed to determine measures of the degree of myelination, in particular the g-ratio. However, variability in underlying physical principles and different biological models influence measured myelin concentrations, and consequently g-ratio values. We therefore investigated similarities and differences between five different myelin-sensitive MRI measures and their effects on g-ratio mapping in the brains of both MS patients and healthy volunteers. We compared two different estimates of the myelin water fraction (MWF) as well as the inhomogeneous magnetization transfer ratio (ihMTR), magnetization transfer saturation (MTsat), and macromolecular tissue volume (MTV) in 13 patients with MS and 14 healthy controls. In combination with diffusion-weighted imaging, we derived g-ratio parameter maps for each of the five different myelin measures. The g-ratio values calculated from different myelin measures varied strongly, especially in MS lesions. While, compared to normal-appearing white matter, MTsat and one estimate of the MWF resulted in higher g-ratio values within lesions, ihMTR, MTV, and the second MWF estimate resulted in lower lesion g-ratio values. As myelin-sensitive measures provide rough estimates of myelin content rather than absolute myelin concentrations, resulting g-ratio values strongly depend on the utilized myelin measure and model used for g-ratio mapping. When comparing g-ratio values, it is, thus, important to utilize the same MRI methods and models or to consider methodological differences. Particular caution is necessary in pathological tissue such as MS lesions.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Humanos , Vaina de Mielina/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Agua
5.
Curr Probl Diagn Radiol ; 51(4): 534-539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35125226

RESUMEN

OBJECTIVE: To correlate a radiological assessment of MR motion artifacts with the incidence of repeated sequences and delays derived from modality log files (MLFs) and investigate the suitability of log files for quantifying the operational impact of patient motion. MATERIALS AND METHODS: An experienced, blinded neuroradiologist retrospectively evaluated one full calendar month of sequentially obtained clinical MR exams of the head and/or brain for the presence of motion artifacts using a previously defined clinical grading scale. MLF data were analyzed to extract the occurrence of repeated sequences during the examinations. Statistical analysis included the determination of 95% confidence intervals for repetition ratios, and Welch's t-test to exclude the hypothesis of equal means for different groups of sequences. RESULTS: A total of 213 examinations were evaluated, comprising 1681 MLF-documented sequences, from which 1580 were archived. Radiological motion assessment scores (0, none to 4, severe) were assigned to each archived sequence. Higher motion scores correlated with a higher MLF-derived repetition probability, reflected by the average motion scores assigned to sequences that would be repeated (group 1, mean=2.5), those that are a repeat (group 2, mean=1.9), and those that are not repeated (group 3, mean=1.1) within an exam. The hypothesis of equal means was rejected with P = 5.9 × 10-5 for groups 1 and 2, P = 9.39 × 10-16 for groups 1 and 3, and P = 1.55 × 10-12 for groups 2 and 3. The repetition probability and associated time loss could be quantified for individual sequence types. The total time loss due to repeat sequence acquisition derived from MLFs was greater than four hours. CONCLUSION: Log file data may help assess patterns of scanner and exam performance and may be useful in identifying pitfalls to diagnostic imaging in a clinical environment, particularly with respect to patient motion.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo , Humanos , Incidencia , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
6.
Sci Rep ; 11(1): 21289, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711847

RESUMEN

Quantitative MRI methods and learning-based algorithms require exact forward simulations. One critical factor to correctly describe magnetization dynamics is the effect of slice-selective RF pulses. While contemporary simulation techniques correctly capture their influence, they only provide final magnetization distributions, require to be run for each parameter set separately, and make it hard to derive general theoretical conclusions and to generate a fundamental understanding of echo formation in the presence of slice-profile effects. This work aims to provide a mathematically exact framework, which is equally intuitive as extended phase graphs (EPGs), but also considers slice-profiles through their natural spatial representation. We show, through an analytical, hybrid Bloch-EPG formalism, that the spatially-resolved EPG approach allows to exactly predict the signal dependency on off-resonance, spoiling moment, microscopic dephasing, and echo time. We also demonstrate that our formalism allows to use the same phase graph to simulate both gradient-spoiled and balanced SSFP-based MR sequences. We present a derivation of the formalism and identify the connection to existing methods, i.e. slice-selective Bloch, slice-selective EPG, and the partitioned EPG. As a use case, the proposed hybrid Bloch-EPG framework is applied to MR Fingerprinting.

7.
Rofo ; 193(8): 919-927, 2021 Aug.
Artículo en Inglés, Alemán | MEDLINE | ID: mdl-33535262

RESUMEN

PURPOSE: In light of the steadily increasing need for economical efficacy and capacity utilization it was the aim of this proof-of-concept work to implement an automated logfile-based analysis tool for MRI scanner utilization and to establish a process analysis. As a primary step, analyses of scanner and protocol utilization, parametrization of protocol processes, their durations, age dependency, and scan efficacy were to be tested. MATERIALS AND METHODS: Logfiles were continuously extracted from a 1.5 T MR scanner (Philips Achieva) and automatically explored for relevant scan parameters. Parameters were extracted into a database and logically combined to protocol parameters. Visualization was achieved using PowerBI (Microsoft, USA). Data aggregation comprised a day-based and protocol-based strategy. In addition, age- and regional-based testing was performed. The frequency of protocol usage was evaluated and those protocols with frequent usage compared regarding efficacy to those rarely used. RESULTS: After successful technical implementation, 3659 MR exams were available for further analysis. Out of a plethora of parameters, those relevant to the understanding of the scan process were identified. The initial results mirror the daily scanner usage and allow identifying, e. g., shortened scanner usage on Fridays or longer examination times in children. A scan efficacy of 69.6 ±â€Š17.6 % excluding preparation process was identified as a parameter with high potential to be optimized in daily routine. CONCLUSION: The logfile-based analysis of MR scanner processes was successfully introduced and holds the promise to be extended into a comprehensive analytic tool for the analysis and optimization of scanner processes. In combination with other variables from the departmental or institutional infrastructure or patient-specific information such tool may be developed into a intelligent steering tool. KEY POINTS: · The automated log file analysis of MR-scanner processes was successfully introduced. · The log file-analysis allows for a detailed analysis of scanner processes. · From a log file-analysis, there is potential benefit to users, applications specialists and developers. CITATION FORMAT: · Frydrychowicz A, Boppel T, Sieber V et al. Automatic, log file-based process analysis of a clinical 1.5T MR scanner: a proof-of-concept study. Fortschr Röntgenstr 2021; 193: 919 - 927.


Asunto(s)
Imagen por Resonancia Magnética , Niño , Humanos , Prueba de Estudio Conceptual
8.
Magn Reson Med ; 85(4): 1865-1880, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33118649

RESUMEN

PURPOSE: Magnetic resonance fingerprinting (MRF) offers rapid quantitative imaging but may be subject to confounding effects (CE) if these are not included in the model-based reconstruction. This study characterizes the influence of in-plane B1+ , slice profile and diffusion effects on T1 and T2 estimation in the female breast at 1.5T. METHODS: Simulations were used to predict the influence of each CE on the accuracy of MRF and to investigate the influence of electronic noise and spiral aliasing artefacts. The experimentally observed bias in regions of fibroglandular tissue (FGT) and fatty tissue (FT) was analyzed for undersampled spiral breast MRF data of 6 healthy volunteers by performing MRF reconstruction with and without a CE. RESULTS: Theoretic analysis predicts T1 under-/T2 overestimation if the nominal flip angles are underestimated and inversely, T1 under-/T2 overestimation if omitting slice profile correction, and T1 under-/T2 underestimation if omitting diffusion in the signal model. Averaged over repeated signal simulations, including spiral aliasing artefacts affected precision more than accuracy. Strong in-plane B1+ effects occurred in vivo, causing T2 left-right inhomogeneity between both breasts. Their correction decreased the T2 difference from 29 to 5 ms in FGT and from 29 to 9 ms in FT. Slice profile correction affected FGT T2 most strongly, resulting in -22% smaller values. For the employed spoiler gradient strengths, diffusion did not affect the parameter maps, corresponding well with theoretic predictions. CONCLUSION: Understanding CEs and their relative significance for an MRF sequence is important when defining an MRF signal model for accurate parameter mapping.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Artefactos , Encéfalo , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
9.
NMR Biomed ; 33(11): e4389, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783321

RESUMEN

Parkinson's disease (PD) affects more than six million people, but reliable MRI biomarkers with which to diagnose patients have not been established. Magnetic resonance fingerprinting (MRF) is a recent quantitative technique that can provide relaxometric maps from a single sequence. The purpose of this study is to assess the potential of MRF to identify PD in patients and their disease severity, as well as to evaluate comfort during MRF. Twenty-five PD patients and 25 matching controls underwent 3 T MRI, including an axial 2D spoiled gradient echo MRF sequence. T1 and T2 maps were generated by voxel-wise matching the measured MRF signal to a precomputed dictionary. All participants also received standard inversion recovery T1 and multi-echo T2 mapping. An ROI-based analysis of relaxation times was performed. Differences between patients and controls as well as techniques were determined by logistic regression, Spearman correlation and t-test. Patients were asked to estimate the subjective comfort of the MRF sequence. Both MRF-based T1 and T2 mapping discriminated patients from controls: T1 relaxation times differed most in cortical grey matter (PD 1337 ± 38 vs. control 1386 ± 37 ms; mean ± SD; P = .0001) and, in combination with normal-appearing white matter, enabled correct discrimination in 85.7% of cases (sensitivity 83.3%; specificity 88.0%; receiver-operating characteristic [ROC]) area under the curve [AUC] 0.87), while for T2 mapping the left putamen was the strongest classifier (40.54 ± 6.28 vs. 34.17 ± 4.96 ms; P = .0001), enabling differentiation of groups in 84.0% of all cases (sensitivity 80.0%; specificity 88.0%; ROC AUC 0.87). Relaxation time differences were not associated with disease severity. Standard mapping techniques generated significantly different relaxation time values and identified other structures as different between groups other than MRF. Twenty-three out of 25 PD patients preferred the MRF examination instead of a standard MRI. MRF-based mapping can identify PD patients with good comfort but needs further assessment regarding disease severity identification and its potential for comparability with standard mapping technique results.


Asunto(s)
Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Anciano , Área Bajo la Curva , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Proyectos Piloto , Curva ROC , Encuestas y Cuestionarios
10.
Neuroimage ; 219: 117014, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32534123

RESUMEN

Demyelination is the key pathological process in multiple sclerosis (MS). The extent of demyelination can be quantified with magnetic resonance imaging by assessing the myelin water fraction (MWF). However, long computation times and high noise sensitivity hinder the translation of MWF imaging to clinical practice. In this work, we introduce a more efficient and noise robust method to determine the MWF using a joint sparsity constraint and a pre-computed B1+-T2 dictionary. A single component analysis with this dictionary is used in an initial step to obtain a B1+ map. The T2 distribution is then determined from a reduced dictionary corresponding to the estimated B1+ map using a combination of a non-negativity and a joint sparsity constraint. The non-negativity constraint ensures that a feasible solution with non-negative contribution of each T2 component is obtained. The joint sparsity constraint restricts the T2 distribution to a small set of T2 relaxation times shared between all voxels and reduces the noise sensitivity. The applied Sparsity Promoting Iterative Joint NNLS (SPIJN) algorithm can be implemented efficiently, reducing the computation time by a factor of 50 compared to the commonly used regularized non-negative least squares algorithm. The proposed method was validated in simulations and in 8 healthy subjects with a 3D multi-echo gradient- and spin echo scan at 3 â€‹T. In simulations, the absolute error in the MWF decreased from 0.031 to 0.013 compared to the regularized NNLS algorithm for SNR â€‹= â€‹250. The in vivo results were consistent with values reported in literature and improved MWF-quantification was obtained especially in the frontal white matter. The maximum standard deviation in mean MWF in different regions of interest between subjects was smaller for the proposed method (0.0193) compared to the regularized NNLS algorithm (0.0266). In conclusion, the proposed method for MWF estimation is less computationally expensive and less susceptible to noise compared to state of the art methods. These improvements might be an important step towards clinical translation of MWF measurements.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Neurológicos , Agua
11.
Magn Reson Med ; 83(2): 521-534, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31418918

RESUMEN

PURPOSE: To develop an efficient algorithm for multi-component analysis of magnetic resonance fingerprinting (MRF) data without making a priori assumptions about the exact number of tissues or their relaxation properties. METHODS: Different tissues or components within a voxel are potentially separable in MRF because of their distinct signal evolutions. The observed signal evolution in each voxel can be described as a linear combination of the signals for each component with a non-negative weight. An assumption that only a small number of components are present in the measured field of view is usually imposed in the interpretation of multi-component data. In this work, a joint sparsity constraint is introduced to utilize this additional prior knowledge in the multi-component analysis of MRF data. A new algorithm combining joint sparsity and non-negativity constraints is proposed and compared to state-of-the-art multi-component MRF approaches in simulations and brain MRF scans of 11 healthy volunteers. RESULTS: Simulations and in vivo measurements show reduced noise in the estimated tissue fraction maps compared to previously proposed methods. Applying the proposed algorithm to the brain data resulted in 4 or 5 components, which could be attributed to different brain structures, consistent with previous multi-component MRF publications. CONCLUSIONS: The proposed algorithm is faster than previously proposed methods for multi-component MRF and the simulations suggest improved accuracy and precision of the estimated weights. The results are easier to interpret compared to voxel-wise methods, which combined with the improved speed is an important step toward clinical evaluation of multi-component MRF.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Algoritmos , Teorema de Bayes , Simulación por Computador , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Análisis de los Mínimos Cuadrados , Modelos Teóricos , Neuroimagen , Fantasmas de Imagen
12.
NMR Biomed ; 32(11): e4157, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31393654

RESUMEN

Several very rare forms of dementia are associated with characteristic focal atrophy predominantly of the frontal and/or temporal lobes and currently lack imaging solutions to monitor disease. Magnetic resonance fingerprinting (MRF) is a recently developed technique providing quantitative relaxivity maps and images with various tissue contrasts out of a single sequence acquisition. This pilot study explores the utility of MRF-based T1 and T2 mapping to discover focal differences in relaxation times between patients with frontotemporal lobe degenerative dementia and healthy controls. 8 patients and 30 healthy controls underwent a 3 T MRI including an axial 2D spoiled gradient echo MRF sequence. T1 and T2 relaxation maps were generated based on an extended phase graphs algorithm-founded dictionary involving inner product pattern matching. A region of interest (ROI)-based analysis of T1 and T2 relaxation times was performed with FSL and ITK-SNAP. Depending on the brain region analyzed, T1 relaxation times were up to 10.28% longer in patients than in controls reaching significant differences in cortical gray matter (P = .047) and global white matter (P = .023) as well as in both hippocampi (P = .001 left; P = .027 right). T2 relaxation times were similarly longer in the hippocampus by up to 19.18% in patients compared with controls. The clinically most affected patient had the most control-deviant relaxation times. There was a strong correlation of T1 relaxation time in the amygdala with duration of the clinically manifest disease (Spearman Rho = .94; P = .001) and of T1 relaxation times in the left hippocampus with disease severity (Rho = .90, P = .002). In conclusion, MRF-based relaxometry is a promising and time-saving new MRI tool to study focal cerebral alterations and identify patients with frontotemporal lobe degeneration. To validate the results of this pilot study, MRF is worth further exploration as a diagnostic tool in neurodegenerative diseases.


Asunto(s)
Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/diagnóstico , Imagen por Resonancia Magnética , Anciano , Estudios de Casos y Controles , Demencia/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Proyectos Piloto , Factores de Tiempo
13.
Magn Reson Med ; 81(1): 342-349, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30246342

RESUMEN

PURPOSE: To develop and validate a new algorithm called "dictionary-based electric properties tomography" (dbEPT) for deriving tissue electric properties from measured B1 maps. METHODS: Inspired by Magnetic Resonance fingerprinting, dbEPT uses a dictionary of local patterns ("atoms") of B1 maps and corresponding electric properties distributions, derived from electromagnetic field simulations. For reconstruction, a pattern from a measured B1 map is compared with the B1 atoms of the dictionary. The B1 atom showing the best match with the measured B1 pattern yields the optimum electric properties pattern that is chosen for reconstruction. Matching was performed through machine learning algorithms. Two dictionaries, using transmit and transceive phases, were evaluated. The spatial distribution of local matching distance between optimal atom and measured pattern yielded a reconstruction reliability map. The method was applied to reconstruct conductivity of 4 volunteers' brains. A conventional, Helmholtz-based Electric properties tomography (EPT) reconstruction was performed for reference. Noise performance was studied through phantom simulations. RESULTS: Quantitative values of conductivity agree with literature values. Results of the 2 dictionaries exhibit only minor differences. Somewhat larger differences are visible between dbEPT and Helmholtz-based EPT. Quantified by the correlation between conductivity and anatomic images, dbEPT depicts brain details more clearly than Helmholtz-based EPT. Matching distance is minimal in homogeneous brain ventricles and increases with tissue heterogeneity. Central processing unit time was approximately 2 minutes per dictionary training and 3 minutes per brain conductivity reconstruction using standard hardware equipment. CONCLUSION: A new, dictionary-based approach for reconstructing electric properties is presented. Its conductivity reconstruction is able to overcome the EPT transceive-phase problem.


Asunto(s)
Encéfalo/diagnóstico por imagen , Campos Electromagnéticos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Tomografía , Algoritmos , Simulación por Computador , Conductividad Eléctrica , Voluntarios Sanos , Humanos , Aprendizaje Automático , Espectroscopía de Resonancia Magnética , Valores de Referencia , Reproducibilidad de los Resultados , Relación Señal-Ruido , Tomografía Computarizada por Rayos X
14.
Magn Reson Imaging ; 41: 22-28, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28666939

RESUMEN

PURPOSE: The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. MATERIAL AND METHODS: A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T1 and T2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. RESULTS: The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. CONCLUSIONS: Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially resolved MRF.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Aceleración , Algoritmos , Voluntarios Sanos , Frecuencia Cardíaca , Humanos , Imagenología Tridimensional/métodos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Valores de Referencia , Reproducibilidad de los Resultados
15.
Magn Reson Imaging ; 41: 41-52, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28223063

RESUMEN

An iterative reconstruction method for undersampled magnetic resonance fingerprinting data is presented. The method performs the reconstruction entirely in k-space and is related to low rank matrix completion methods. A low dimensional data subspace is estimated from a small number of k-space locations fully sampled in the temporal direction and used to reconstruct the missing k-space samples before MRF dictionary matching. Performing the iterations in k-space eliminates the need for applying a forward and an inverse Fourier transform in each iteration required in previously proposed iterative reconstruction methods for undersampled MRF data. A projection onto the low dimensional data subspace is performed as a matrix multiplication instead of a singular value thresholding typically used in low rank matrix completion, further reducing the computational complexity of the reconstruction. The method is theoretically described and validated in phantom and in-vivo experiments. The quality of the parameter maps can be significantly improved compared to direct matching on undersampled data.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Artefactos , Calibración , Voluntarios Sanos , Humanos , Modelos Estadísticos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Programas Informáticos
17.
Rev Sci Instrum ; 84(4): 043107, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23635181

RESUMEN

Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of (85)Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

18.
Rev Sci Instrum ; 82(9): 093111, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21974577

RESUMEN

We present a wavelength sensor setup for monochromatic visible light, based on the double-layer photo diode WS-7.56. Employing high-precision electronics and automatic compensation of different error sources, we achieve a measurement accuracy of ±0.025 nm with a resolution below 0.01 nm. The described apparatus is particularly suited for the determination of small laser frequency deviations in atomic physics experiments. Various design issues as well as error sources and diode characteristics are discussed.

19.
Phys Rev Lett ; 104(1): 013001, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20366361

RESUMEN

We present the experimental observation of the antiblockade in an ultracold Rydberg gas recently proposed by Ates et al. [Phys. Rev. Lett. 98, 023002 (2007)]. Our approach allows the control of the pair distribution in the gas and is based on a strong coupling of one transition in an atomic three-level system, while introducing specific detunings of the other transition. When the coupling energy matches the interaction energy of the Rydberg long-range interactions, the otherwise blocked excitation of close pairs becomes possible. A time-resolved spectroscopic measurement of the Penning ionization signal is used to identify slight variations in the Rydberg pair distribution of a random arrangement of atoms. A model based on a pair interaction Hamiltonian is presented which well reproduces our experimental observations and allows one to deduce the distribution of nearest-neighbor distances.

20.
Phys Rev Lett ; 99(9): 090601, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17930996

RESUMEN

In the quest for signatures of coherent transport we consider exciton trapping in the continuous-time quantum walk framework. The survival probability displays different decay domains, related to distinct regions of the spectrum of the Hamiltonian. For linear systems and at intermediate times the decay obeys a power law, in contrast with the corresponding exponential decay found in incoherent continuous-time random walk situations. To differentiate between the coherent and incoherent mechanisms, we present an experimental protocol based on a frozen Rydberg gas structured by optical dipole traps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...